Human Action Recognition Using Improved Sparse Gaussian Process Latent Variable Model and Hidden Conditional Random Filed
نویسندگان
چکیده
منابع مشابه
Facial Expression Recognition Using Sparse Gaussian Conditional Random Field
The analysis of expression and facial Action Units (AUs) detection are very important tasks in fields of computer vision and Human Computer Interaction (HCI) due to the wide range of applications in human life. Many works has been done during the past few years which has their own advantages and disadvantages. In this work we present a new model based on Gaussian Conditional Random Field. We so...
متن کاملBayesian Gaussian Process Latent Variable Model
We introduce a variational inference framework for training the Gaussian process latent variable model and thus performing Bayesian nonlinear dimensionality reduction. This method allows us to variationally integrate out the input variables of the Gaussian process and compute a lower bound on the exact marginal likelihood of the nonlinear latent variable model. The maximization of the variation...
متن کاملRobust Incremental Hidden Conditional Random Fields for Action Recognition
viii Εκτεταμένη Περίληψη x
متن کاملGaussian Process Latent Random Field
The Gaussian process latent variable model (GPLVM) is an unsupervised probabilistic model for nonlinear dimensionality reduction. A supervised extension, called discriminative GPLVM (DGPLVM), incorporates supervisory information into GPLVM to enhance the classification performance. However, its limitation of the latent space dimensionality to at most C − 1 (C is the number of classes) leads to ...
متن کاملSemi-supervised Gaussian process latent variable model with pairwise constraints
In machine learning, Gaussian process latent variable model (GP-LVM) has been extensively applied in the field of unsupervised dimensionality reduction. When some supervised information, e.g., pairwise constraints or labels of the data, is available, the traditional GP-LVM cannot directly utilize such supervised information to improve the performance of dimensionality reduction. In this case, i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2018
ISSN: 2169-3536
DOI: 10.1109/access.2018.2822713